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A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to
time-dependent precipitation hardening increases the strength and hardness as well as modifying other
mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many
decades; therefore, extensive information is available in literature about the precipitation-hardening re-
sponse of various series of aluminum alloys. The age-hardening response of these alloys is usually repre-
sented in graphical form as plotted between property changes and aging time for different temperatures.
In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for
automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging
conditions (time/temperature combination), it is desirable to express these relationships in a formal
mathematical structure. A mathematical model is developed in this article for widely used heat
treatable aluminum alloys used in the extrusion industry. This model is a condensed representation
of all σ = f (T, t ) curves in different series of aluminum alloys, and the parameters of this model charac-
terize the various compositions of the alloys in the series.

1. Introduction

In certain alloys, precipitation of solute-rich particles oc-
curs from supersaturated solid solution (which is prepared by
solution treatment) after its quenching. This leads to an in-
crease in the strength of the alloy, termed precipitation harden-
ing, age hardening, or aging. The best combination of
mechanical properties is achieved when a uniform dispersion
of fine solute particles can be obtained. If the particles become
coarser or precipitate at the grain boundaries, the mechanical
properties are impaired (Ref 8). The two major factors that in-
fluence the mechanical properties as a result of age hardening
are aging time and aging temperature. Conventionally, the age-
hardening response of the alloys is graphically represented in
the form of “aging curves.”  These aging curves represent the
aging-time/mechanical-property behavior of the material at a
constant aging temperature and tend to follow a skewed, bell-
shaped profile. These curves indicate an initial enhancement
and a later degradation of mechanical properties that is consis-
tent with the precipitation of fine, uniformly dispersed particles
and then their coarsening with increasing aging time.

The objective of this work is to formulate a mathematical
model representing the strength dependence of aged aluminum
alloys on aging parameters (aging time and aging temperature).

2. Available Data

In order to develop a mathematical model, experimental
data are required that relate the mechanical properties with the

aging parameters (aging time and temperature). Although a
number of aluminum alloys have been developed for various
applications, this work is directed toward heat treatable alumi-
num alloys, which are widely used in the extrusion industry.
Approximately 60 to 70% of the extrusions sold in the United
States and perhaps worldwide are from the alloy family
AA6063/AA6060/AA6061/AA6005A (Ref 1). Of these alloys,
AA6063 is the most widely used as a general-purpose alloy. Al-
loy AA6060 is similar in composition as well as in mechanical
properties, to AA6063 (Ref 2). AA6061 is also widely used for
extrusion and has a sizable consumption in industry (Ref 3).
The aging data for AA6063—a popular structural, heat treatable
aluminum alloy—are obtained from literature (Ref 4) through a
major manufacturer of aluminum products in the Middle East.
These data are currently being used in the commercial aging proc-
ess by this manufacturer and are used for the task of mathematical
modeling. The strength is measured in kg/mm2 (9.81 MPa).

The aging data for alloy AA6061 are taken from Ref 5. These
data are for general T6 condition, indicating that specimens were
solution treated at about 530 °C, quenched, and artificially aged at
various temperatures. The strength is measured in MPa.

Experimental aging data of alloy AA6069, which is a new
alloy produced for improved mechanical properties, are also
taken from literature (Ref 6). The available data are for hot ex-
trusion, and strength is measured in MPa.

3. Mathematical Modeling

The available data are in graphical form, indicating the ef-
fect of aging time (in hours) on yield strength and tensile
strength (kg/mm2 or MPa) at different aging temperatures. The
data are plotted on a peculiar log scale (for one curve it is of
base 10, for the second curve it is of base 2, and for the third
curve it is linear). Digitized data were obtained from the aging
curves and were tabulated on a linear time scale.
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Initial observation of the data and the understanding of the
process indicates that the functional relationship should repre-
sent the following characteristics:

• The model should be a function of time and temperature.
• The function should initially indicate an increasing and

then a decreasing behavior.
• The function should give a certain value of mechanical

property being modeled at the inception of the aging proc-
ess.

In general, the model should have the following form:

σ = σo + f (t, T ) (Eq 1)

where σ is the tensile strength, σo is the initial tensile strength
at the inception of the aging process, and t and T are time and
temperature, respectively.

A number of different mathematical models were explored
for their adequacy to represent the second term in the right-
hand side of Eq 1, that is, the function f (t, T ). The suitability of
the fitted equation (model) was assessed using several statisti-
cal measures; the main criterion was the coefficient of determi-
nation (r 2), which gives the comparison of predicted and actual
values. F-statistic and P-values are two other criteria that can
be used to assess the model.

Based on these statistical measures, almost all of these mod-
els were rejected, mainly because of the poor (r 2) values indi-

cating the poor prediction from the models. Considering the re-
semblance of the aging curves with the general shape of the
skewed distributions, another model was proposed. This
model, based on the Weibull distribution (Ref 7), has the fol-
lowing form:

f (t ) = A ⋅ t B ⋅ exp (C ⋅ t n) (Eq 2)

This function does represent an initial increasing and then a de-
creasing trend. However, the model in this form is inadequate
because only one independent variable is involved. The model
represents the age-hardening response at a certain aging tem-
perature, while aging time is varied. This model, however, can
be extended to include the temperature as a variable if the coef-
ficients in the model are considered temperature dependent and
explored using a double (or two-stage) regression technique.
The procedure for this technique is:

• In the first step (stage 1), regression of data at each individ-
ual aging temperature was separately carried out to explore
the predictive model for a single temperature. This resulted
in a set of equations for both yield and tensile strength as a
function of time at a constant temperature.

• In the subsequent step (stage 2), regression of the coeffi-
cients obtained in the first step was carried out to determine
their dependence on temperature.

• The final form of the model is:

Table 1 Regression models for yield and tensile strength of AA6063

Temperature Model Model
(T ), °C (yield strength) (tensile strength)

130 100 + 14.9052 t 0.949 exp [–0.1318 t 0.8] 200 + 25.2704 t 0.1766 exp [0.01967 t 0.8]
155 100 + 24.0801 t 0.777 exp [–0.0391 t 0.8] 200 + 30.6367 t 0.3065 exp [0.01781 t 0.8]
170 100 + 53.3193 t 1.138 exp [–0.2212 t 0.8] 200 + 42.7264 t 0.5671 exp [–0.0777 t 0.8]
185 100 + 85.5595 t 1.384 exp [–0.3910 t 0.8] 200 + 55.3480 t 0.6122 exp [–0.1506 t 0.8]
200 100 + 190.574 t 1.387 exp [–0.6728 t 0.8] 200 + 100.850 t 0.9497 exp [–0.5374 t 0.8]
220 100 + 940.119 t 2.363 exp [–1.9840 t 0.8] 200 + 414.528 t 1.6358 exp [–1.8826 t 0.8]

Table 2 Regression models for yield and tensile strength of AA6061

Temperature Model          Model
(T ), °C (yield strength)          (tensile strength)

120      150 + 3.4975 t 0.6322 exp [–0.0888 t 0.36]  250 + 7.2436 t 0.1766 exp [–0.1744 t 0.36]
150      150 + 19.8943 t 0.4777 exp [–0.1201 t 0.36]  250 + 17.46 t 0.3065 exp [–0.367 t 0.36]
170      150 + 47.73 t 0.9856 exp [–0.6944 t 0.36]  250 + 40.7175 t 0.5671 exp [–0.7692 t 0.36]
205      150 + 1754.839 t 1.2447 exp [–2.692 t 0.36]  250 + 1185.441 t 0.6122 exp [–3.3240 t 0.36]
230      150 + 15,457.86 t 1.3056 exp [5.0598 t 0.36]  250 + 10,773.22 t 0.9497 exp [–6.7474 t 0.36]

Table 3 Regression models for yield and tensile strength of AA6069

Temperature Model Model
(T ), °C (yield strength) (tensile strength)

160 300 + 17.33 t 0.909 exp [–0.0499 t 0.9]   400 + 47.658 t 0.1984 exp [0.000072 t 0.9]
171 300 + 20.5198 t 1.1769 exp [–0.0963 t 0.9] 400 + 13.16 t 0.9508 exp [–0.0649 t 0.9]
182 300 + 82.8775 t 0.3977 exp [–0.0388 t 0.9] 400 + 62.535 t 0.2129 exp [–0.03363 t 0.9]
193 300 + 140.171 t 0.0504 exp [–0.0123 t 0.9] 400 + 82.1723 t –0.1201 exp [–0.00548 t 0.9]

354Volume 8(3) June 1999 Journal of Materials Engineering and Performance



σ = σo + A (T) ⋅ t B (T ) ⋅ exp (C (T) ⋅ t n) (Eq 3)

where A (T), B (T), and C (T) are temperature-dependent func-
tions and σo and n are constants.

4. Results and Discussion

The graphical data was digitized and tabulated for σ – σo.
The data for each aging temperature were then regressed to ob-
tain the coefficients of Eq 2. In stage 1, the regression was in-

itially carried out for different values of n, and then n was
forced to be a constant. The results from stage 1 regression
for yield strength and tensile strength are compiled in Tables
1 to 3.

The main statistical criterion for the measure of the model
performance, the values of (r 2) were found to be more than 0.9
for most of these curves. The predicted models were then com-
pared with the actual data, and the comparisons for AA6063 are
shown in Fig. 1 and 2 for yield and tensile strength, respec-
tively. It is evident from these results that the coefficients A, B,
and C are a function of aging temperature (T), while σo and n
are constants.

Fig. 1 Comparison of data and model after stage 1 regression (yield strength)
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Once the values of these temperature-dependent coeffi-
cients are available from the stage 1 regression, their functional
dependence on temperature can be obtained, again by regres-
sion. Based on the physics of the problem, the dependence of
yield and tensile strengths on temperature was initially mod-
eled to be related to four different terms involving temperature.
These terms are the simple T term, indicating the direct depend-
ence of the process on aging temperature, a reciprocal T term
representing the Arrhenius nature of the model of the aging
process, the square of T, and square root of T terms check the
variation of coefficients with temperature. In general, the coef-
ficients A (T ), B (T ), or C (T ) can be modeled as:

Y (T ) = yo + y1 T + y2 (1/T ) + y3 √T + y4 T 2 (Eq 4)

where Y (T ) represents a coefficient of the model. The signifi-
cance of these terms was tested using analysis of variance
(ANOVA), and all of these terms were found to be significant
for the model for a confidence level of 90% and above. Addi-
tionally, the values of r 2 for stage 2 regression were found to be
more than 0.95. Thus, in the final form of the model:

σ − σo = A (T ) ⋅ t B (T ) exp (C (T ) ⋅ t n)

Fig. 2 Comparison of data and model after stage 1 regression (tensile strength)
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The parameters A (T ), B (T ), and C (T ) are given as:

A = ao + a1 T + a2 (1/T ) + a3 √T + a4 T 2

B = bo + b1 T + b2 (1/T ) + b3 √T + b4 T 2

C = co + c1 T + c2 (1/T ) + c3 √T + c4 T 2 (Eq 5)

The values of coefficients ai, bi, and ci (where i = 0, 1, 2, 3, 4)
and σo are given in Table 4 for yield strength and in Table 5 for

tensile strength, and the value of n was 0.8, 0.36, and 0.9 for
AA6063, AA6061, and AA6069, respectively, as previously
stated. The comparisons of the models and data for yield
strength and tensile strength are presented in Fig. 3 to 8 for the
alloys used in this work. This is an important development if
computer-controlled aging is to be used; the above relation-
ships can be used to effectively develop such controls. Addi-
tionally, if due to some reason the aging temperatures for
which the experimental curves are available cannot be
achieved, this model can be used to predict the resulting me-
chanical properties (yield and tensile strength) at different
temperatures.

Fig. 3 Comparison of data and model after stage 2 regression (yield strength)
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Fig. 4 Comparison of data and model after stage 2 regression (tensile strength)

Table 4 Values of subcoefficients for yield strength

AA6061 AA6063 AA6069
Coefficient (σo = 150 MPa) (σo = 100 MPa) (σo = 300 MPa)

ao –21,542,185.77 –2,903,262.032 –494,812.113
a1 –137,831.892 –17,884.17678 –1,360.0909
a2 370,067,895 52,014,319.8 14,868,302.7
a3 3,067,375.712 405,414.9008 48,977.1270
a4 96.9930468 12.16976246 0
bo –2,315.9608 –9,264.405236 11,737.8485
b1 –12,968,563 –54.25067475 32.836643
b2 44,843.8445 174,065.2109 –347,968.76
b3 309.026655 1,261.8533294 –1,171.3074
b4 0.00791005 0.035008216 0
co 395.977417 5,434.95965 –1,064.2579
c1 2.6364364 32.78772658 –2.9667816
c2 –7,224.383587 –99,558.63189 31,683.32
c3 –56.6284669 –750.8908579 106.005263
c4 –0.00221539 –0.021904789 0

Table 5 Values of subcoefficients for tensile strength

AA6061 AA6063 AA6069
Coefficient (σo = 250 MPa) (σo = 200 MPa) (σo = 400 MPa)

ao –15,291,826.54 –1,193,375.03 –900,900.108
a1 –97,756.1 –7,361.34266 –2,517.05754
a2 262,895,580 21,351,728.99 26,765,664.16
a3 2,176,479 166,760.2804 89,839.6415
a4 68.72475 5.016044415 0
bo 28.7248 –2,325.7525 14,912.359
b1 0.46855 –14.0865874 41.5343
b2 347.667 42,380.39679 –444,470.310
b3 –7.32422 321.995811 –1,484.66667
b4 –0.00048 0.009459402 0
co –566.792 3,235.215266 –763.36915
c1 –2.20866 20.91346326 –2.09931
c2 12,687.13 –58,541.7721 23,042.1238
c3 65.95429 –468.973564 75.518866
c4 0.000239 –0.01458596 0
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5. Conclusions

A mathematical model based on experimental data has been
developed to predict the mechanical-property (tensile strength
and yield strength) response of a class of extrudable aluminum
alloys as a result of age-hardening process. The aging tempera-
ture (T ) and the residence time (t ) at the aging temperature
have been used as independent variables. It is shown that the
model provides reasonably good prediction of mechanical-
property dependence on independent variables (t and T ) when
compared to experimental data. A significant contribution is
the use of the model to predict the mechanical properties at in-
termediate temperatures for which experimental data are not
available. Additionally, the model can be successfully used in a
computer-controlled aging environment. The model can also
be used to provide a basis for writing computer codes for an
aging process when a desired mechanical property is known and a
best combination of independent variables (t and T ) is sought.
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Fig. 5 Comparison of data and model after stage 2 regression
(yield strength)

Fig. 6 Comparison of data and model after stage 2 regression
(tensile strength)
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Fig. 8 Comparison of data and model after stage 2 regression (tensile strength)

Fig. 7 Comparison of data and model after stage 2 regression (yield strength)
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